309 research outputs found

    Activity in the pallial nerve of knobbed (Busycon carica) and channeled (Busycotypus canaliculatum) whelks recorded during exposure of the osphradium to odorant solutions

    Get PDF
    Adult horseshoe crabs (Limulus polyphemus) are the preferred bait in the U.S. east coast whelk pot fishery, but their harvest is being restricted because of severe population declines in the Chesapeake and Delaware bays. To identify other baits, the activity in the pallial nerve of whelks was determined during exposure of the osphradium to odorant solutions prepared from horseshoe crab eggs, horseshoe crab hemolymph, and hard clam (Mercenaria mercenaria) tissue. All three elicited significant responses; bait based on them may provide an alternative to the use of adult horseshoe crabs, although extensive behavioral testing remains to be done. Channeled whelk did not respond to molecular weight fractions (>3 kDa and <3 kDa) prepared from horseshoe crab egg odorant solutions but did respond when the molecular weight fractions were recombined. Whelks appear to have broadly tuned chemoreceptors and manufactured baits may need to mimic the complex mixture of odorants derived from natural sources

    Plasticity in Standard and Maximum Aerobic Metabolic Rates in Two Populations of an Estuarine Dependent Teleost, Spotted Seatrout (Cynoscion nebulosus)

    Get PDF
    We studied the effects of metabolic cold adaptation (MCA) in two populations of a eurythermal species, spotted seatrout (Cynoscion nebulosus) along the U.S. East Coast. Fish were captured from their natural environment and acclimated at control temperatures 15 °C or 20 °C. Their oxygen consumption rates, a proxy for metabolic rates, were measured using intermittent flow respirometry during acute temperature decrease or increase (2.5 °C per hour). Mass-specific standard metabolic rates (SMR) were higher in fish from the northern population across an ecologically relevant temperature gradient (5 °C to 30 °C). SMR were up to 37% higher in the northern population at 25 °C and maximum metabolic rates (MMR) were up to 20% higher at 20 °C. We found evidence of active metabolic compensation in the southern population from 5 °C to 15 °C (Q10 \u3c 2), but not in the northern population. Taken together, our results indicate differences in metabolic plasticity between the northern and southern populations of spotted seatrout and provide a mechanistic basis for predicting population-specific responses to climate change

    Recovery Of Visual Function In Pacific Halibut (Hippoglossus Stenolepis) After Exposure To Bright Light

    Get PDF
    Commercial fishing exposes Pacific halibut (Hippoglossus stenolepis) to a myriad of stressors during capture, processing, and discarding, including exposure to direct sunlight that causes diminished retinal sensitivity. It is unknown, however, whether recovery occurs. We therefore employed both electroretinography and a behavioral assay to measure recovery of retinal sensitivity and visual function in halibut exposed to 15 min of simulated sunlight. We used electroretinography to measure changes in retinal light sensitivity after recovery periods of 2, 4, 6 and 10 weeks and a behavioral assay to measure responsiveness to simulated prey (i.e., in behavioral trials) to measure visual function after recovery periods of 2 to 6 d. Exposure to simulated sunlight significantly reduced retinal sensitivity to light with no apparent recovery after 10 weeks. Although retinal sensitivity was reduced, fish exposed to direct sunlight displayed no demonstrable deficits in visual function during behavioral trials

    The repulsive and feeding-deterrent effects of electropositive metals on juvenile sandbar sharks (Carcharhinus plumbeus)

    Get PDF
    Reducing shark bycatch and depredation (i.e., damage caused by sharks to gear, bait, and desired fish species) in pelagic longline fisheries targeting tunas and swordfish is a priority. Electropositive metals (i.e., a mixture of the lanthanide elements lanthanum, cerium, neodymium, and praseodymium) have been shown to deter spiny dogfish (Squalus acanthias, primarily a coastal species) from attacking bait, presumably because of interactions with the electroreceptive system of this shark. We undertook to determine the possible effectiveness of electropositive metals for reducing the interactions of pelagic sharks with longline gear, using sandbar sharks (Carcharhinus plumbeus, family Carcharhinidae) as a model species. The presence of electropositive metal deterred feeding in groups of juvenile sandbar sharks and altered the swimming patterns of individuals in the absence of food motivation (these individuals generally avoided approaching electropositive metal closer than ~100 cm). The former effect was relatively short-lived however; primarily (we assume) because competition with other individuals increased feeding motivation. In field trials with bottom longline gear, electropositive metal placed within ~10 cm of the hooks reduced the catch of sandbar sharks by approximately two thirds, compared to the catch on hooks in the proximity of plastic pieces of similar dimensions. Electropositive metals therefore appear to have the potential to reduce shark interactions in pelagic longline fisheries, although the optimal mass, shape, composition, and distance to baited hooks remain to be determined

    The inhibition of Stat5 by a peptide aptamer ligand specific for the DNA binding domain prevents target gene transactivation and the growth of breast and prostate tumor cells

    Get PDF
    The signal transducer and activator of transcription Stat5 is transiently activated by growth factor and cytokine signals in normal cells, but its persistent activation has been observed in a wide range of human tumors. Aberrant Stat5 activity was initially observed in leukemias, but subsequently also found in carcinomas. We investigated the importance of Stat5 in human tumor cell lines. shRNA mediated downregulation of Stat5 revealed the dependence of prostate and breast cancer cells on the expression of this transcription factor. We extended these inhibition studies and derived a peptide aptamer (PA) ligand, which directly interacts with the DNA-binding domain of Stat5 in a yeast-two-hybrid screen. The Stat5 specific PA sequence is embedded in a thioredoxin (hTRX) scaffold protein. The resulting recombinant protein S5-DBD-PA was expressed in bacteria, purified and introduced into tumor cells by protein transduction. Alternatively, S5-DBD-PA was expressed in the tumor cells after infection with a S5-DBD-PA encoding gene transfer vector. Both strategies impaired the DNA-binding ability of Stat5, suppressed Stat5 dependent transactivation and caused its intracellular degradation. Our experiments describe a peptide based inhibitor of Stat5 protein activity which can serve as a lead for the development of a clinically useful compound for cancer treatment

    Effects of food limitation on growth, body condition and metabolic rates of non-native blue catfish

    Get PDF
    Establishment and range expansion of non-native species in novel habitats depend on their energetic requirements and food availability. Knowledge of growth and metabolic rates of non-native fishes at various food levels is particularly critical to inform models that assess their invasion potential. We compared growth rates, body condition and metabolic rates of juvenile blue catfish (Ictalurus furcatus), an invasive species in many lakes, coastal rivers and estuaries throughout the Eastern USA, at three ration levels: ad libitum (3.5% of fish body mass/d), two-third ad libitum and one-third ad libitum. All fish survived the entire duration of the experiment (4 months) regardless of ration level. Blue catfish exhibited routine metabolic rates similar to those of other benthic fishes but below the more active species. Mean growth rates were lower at reduced ration levels, but we found no evidence of ration size effect on body condition or metabolic rates. Blue catfish therefore appear to have mechanisms that enable them to survive low rates of food intake for long periods, indicating the potential of this invasive species to become established in habitats with low prey availability

    Physiological Limits to Inshore Invasion of Indo-Pacific Lionfish (Pterois Spp.): Insights from the Functional Characteristics of Their Visual System and Hypoxia Tolerance

    Get PDF
    Indo-Pacific lionfish (Pterois spp.) have become established throughout the Caribbean and the coastal regions of the Gulf of Mexico and western Atlantic Ocean from North Carolina to central Brazil. Lionfish may also invade estuaries, as they tolerate salinities down to 4‰. We hypothesize that the functional characteristics of their visual system (which evolved in the clear tropical waters of the Indo-Pacific) or their inability to tolerate hypoxia will limit the capacity of lionfish to occupy these areas. We assessed the former with corneal electroretinography and the latter with intermittent-flow respirometry. The luminous sensitivity, temporal resolution (quantified as flicker fusion frequency), and spectral sensitivity of the lionfish visual system are like those of native piscivores, indicating that their visual system will be functional under estuarine photic conditions and allow lionfish to be effective piscivores. In contrast, acute exposure to reduced oxygen levels (equivalent to those commonly occurring in mid-Atlantic and Gulf of Mexico estuaries) exceeded the physiological tolerances of lionfish. We therefore conclude that hypoxia will control or limit estuarine invasion

    Idiopathic Lesions and Visual Deficits in the American Lobster (Homarus americanus) From Long Island Sound, NY

    Get PDF
    In 1999, a mass mortality of the American lobster (Homarus americanus) occurred in western Long Island Sound (WLIS). Although the etiology of this event remains unknown, bottom water temperature, hypoxia, heavy metal poisoning, and pesticides are potential causal factors. Lobsters from WLIS continue to display signs of morbidity, including lethargy and cloudy grey eyes that contain idiopathic lesions. As the effect of these lesions on lobster vision is unknown, we used electroretinography (ERG) to document changes in visual function in lobsters from WLIS, while using histology to quantify the extent of physical damage. Seventy-three percent of lobsters from WLIS showed damage to photoreceptors and optic nerve fibers, including necrosis, cellular breakdown, and hemocyte infiltration in the optic nerves, rhabdoms, and ommatidia. Animals with more than 15% of their photoreceptors exhibiting damage also displayed markedly reduced responses to 10-ms flashes of a broad-spectrum white light. Specifically, maximum voltage (Vmax) responses were significantly lower and occurred at a lower light intensity compared to responses from lobsters lacking idiopathic lesions. Nearly a decade after the 1999 mortality event, lobsters from WLIS still appear to be subjected to a stressor of unknown etiology that causes significant functional damage to the eyes

    The effect of stimulation frequency on the transmural ventricular monophasic action potential in yellowfin tuna Thunnus albacares

    Get PDF
    Monophasic action potentials (MAPs) were recorded from the spongy and compact layers of the yellowfin tuna Thunnus albacares ventricle as stimulation frequency was increased. MAP duration decreased with increase in stimulation frequency in both the spongy and compact myocardial layers, but no significant difference in MAP duration was observed between the layers

    Spectral Sensitivity, Luminous Sensitivity, and Temporal Resolution of the Visual Systems in Three Sympatric Temperate Coastal Shark Species

    Get PDF
    We used electroretinography (ERG) to determine spectral and luminous sensitivities, and the temporal resolution (flicker fusion frequency, FFF) in three sympatric (but phylogenetically distant) coastal shark species: Carcharhinus plumbeus (sandbar shark), Mustelus canis (smooth dogfish), and Squalus acanthias (spiny dogfish). Spectral sensitivities were similar (range ~400–600 nm, peak sensitivity ~470 nm), with a high likelihood of rod/cone dichromacy enhancing contrast discrimination. Spiny dogfish were significantly less light sensitive than the other species, whereas their FFF was ~19 Hz at maximum intensities; a value equal to that of sandbar shark and significantly above that of smooth dogfish (~9–12 Hz). This occurred even though experiments on spiny dogfish were conducted at 12 versus 25 °C and 20 °C for experiments on sandbar shark and smooth dogfish, respectively. Although spiny dogfish have a rod-dominated retina (rod:cone ratio 50:1), their visual system appears to have evolved for a relatively high temporal resolution (i.e., high FFF) through a short integration time, with the requisite concomitant reduction in luminous sensitivity. Our results suggest adaptive plasticity in the temporal resolution of elasmobranch visual systems which reflects the importance of the ability to track moving objects such as mates, predators, or prey
    • …
    corecore